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Phase transitions of an oscillator neural network with a standard Hebb learning rule

Toru Aonishi
Department of Systems and Human Science, Graduate School of Engineering Science, Osaka University,

1-3 Machikaneyama-cho, Toyonaka, Osaka 560, Japan
~Received 8 May 1998; revised manuscript received 30 June 1998!

Studies have been carried out on the phase transition phenomena of an oscillator network model based on a
standard Hebb learning rule such as the Hopfield model. The relative phase informations, the in phase and
antiphase, can be embedded in the network. By self-consistent signal-to-noise analysis, it was found that the
storage capacity is given byac50.042, which is better than that of Cook’s model. However, the retrieval
quality is worse. In addition, an investigation was made into an acceleration effect caused by asymmetry of the
phase dynamics. Finally, it was numerically shown that the storage capacity can be improved by modifying the
shape of the coupling function.@S1063-651X~98!12710-1#

PACS number~s!: 87.10.1e, 05.90.1m, 89.70.1c
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I. INTRODUCTION

Two hypotheses are available on the carrier of inform
tion in the brain. One, the rate coding hypothesis, states
information is represented by the density of spikes. T
other, the temporal coding hypothesis, states that informa
is represented by the timing of neuronal firings, that is,
synchronization of oscillatory neural activities.

Visual information is divided into a number of feature
e.g., color, form, motion, and so on, which are processe
parallel in different areas of the brain. von der Malsburg@1#
has emphasized the necessity of temporal coding to b
these features, and have called into question conventi
models based on rate coding. It should be noted that s
physiological phenomena@2# have supported his discussio
Therefore, this discussion may also increase interest in t
poral coding.

One merit of temporal coding is that the information pr
cessing~e.g., optimization-minimization of an energy fun
tion! achieved by temporal coding neurons~i.e., coincidence
detectors! is faster than that achieved by rate coding neur
~i.e., integrators! @3#.

Recently, therefore, the oscillator neural network has b
attracting the attention of a growing number of researche

In this paper, we discuss a class of oscillator neural n
works that store two-value memory patterns into synch
nously oscillating states. This class of oscillator neural n
works is difficult to study analytically, and therefore was n
discussed in previous works@4,5#. To overcome the diffi-
culty, we employ a powerful method@6# that can be applied
to various networks, and derive the memory capacity. O
model is more biologically relevant than previous mod
@4,5#, since it is based on a real number synapse whic
specified by a standard Hebb learning rule.

In previous analyses@4,5,7# and our analysis, a couplin
function of a phase equation was approximately assume
the sine function for mathematical tractability. In a lar
population of uniformly coupled oscillators with scatter
natural frequencies~which corresponds to ferromagnet
models!, the behavior of the system is invariant to the sha
of the coupling function, that is, the critical variance of t
natural frequency causing a phase transition is only dep
PRE 581063-651X/98/58~4!/4865~7!/$15.00
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dent on the lowest frequency components of the coup
function @8#. However, the former analyses do not supp
our analysis, since properties of the cross-talk noise in
system are different from those of scattered natural frequ
cies which break the mutual entrainment.

In this parer, in order to verify effects of the shape of t
coupling function on the performance of a network, we es
mate the memory capacity of more realistic models. In ad
tion, we numerically show that, in the case of an associa
memory~on the basis of an oscillator network!, gaps in the
coupling function between in phase and antiphase impr
the performance.

II. ANALYSIS OF AN OSCILLATOR NETWORK BASED
ON A STANDARD HEBB LEARNING RULE

In general, when the coupling is sufficiently weak, t
high-dimensional dynamics of a coupled oscillator syst
can be reduced to the following phase equation@9#,

df i

dt
52(

j 51

N

Ji j g~f i2f j !;

i 51, . . . ,N, ~1!

whereN is the total number of oscillators,f i is the phase of
the i th oscillator andJi j denotes a synaptic weight.g(f) is a
periodic function. Figures 1~a! and 1~b! show examples of

FIG. 1. ~a! and ~b! Examples ofg(f) that are obtained by the
numerical calculation of weakly coupled BVP oscillators, i.e., E
~26!, where~a! a50,b520.5,c55.0 and~b! a50,b50,c55.0.
4865 © 1998 The American Physical Society
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g(f) values~sinelike curves! obtained by the numerical ca
culation of weakly coupled Bonhoeffer–Van der Pol~BVP!
oscillators.

For mathematical tractability, we approximately assu
g(f)5sin(f). Then, Eq.~1! is expressed as

df i

dt
52(

j 51

N

Ji j sin~f i2f j !. ~2!

In Cook’s model~a Q-state clock model withQ→`) @4#, Ji j
is a complex number synapse specified by a general
Hebb learning rule@7,5#, which cannot be easily achieved
biological implementation. Cook’s model can be regarded
an extension of Hopfield networks to ‘‘multistates.’’ Her
Ji j is specified by the following learning rule:

Ji j 5
1

N (
m51

p

j i
mj j

m , j i
m5exp~ iu i

m!, ~3!

where$u i
m% i 51, . . . ,N,m51, . . . ,p are phase patterns to be stor

in the network, and are randomly assigned to 0 orp with a
probability of 1/2.

We define a parametera ~loading rate! such that a
5p/N. This learning rule is equivalent to a standard He
learning rule like in the Hopfield model@10#, which can be
easily achieved in biological implementation:Ji j increases
between simultaneously firing cells; otherwise,Ji j decreases

In area CA1 of the hippocampus, stimulation on the
phase of the hippocampal theta rhythm includes a long-t
potentiation that can be depontentiated by stimulation on
anti-phase of the theta rhythm@11#. Thus, oscillator network
models with the standard Hebb learning are simple and
logically plausible, yet have to be analyzed mathematica
@5,12#.

System~2! has the following potentialV:

V52
1

2N (
i j

N

(
m

p

cos@~f i2u i
m!2~f j2u j

m!#. ~4!

This potential~4! is invariant under the transformationf i
→f i1b with any bPR. In other words, the equilibrium
solution is irresistant to a uniform shift off i ~the neutral
stability!. Hence, the relative phase informations, i.e., the
phase and antiphase, can be embedded in the network.

Here, we study the equilibrium properties of system~2!
when p,N→` with fixed a5p/N, by using self-consisten
signal-to-noise analysis~SCSNA! @6#, which is based on the
S/N analysis to explain the equilibrium properties. The
sults of applying SCSNA to the Hopfield model@6# and
Cook’s model@5# coincide with those of the replica theor
@13,4#. SCSNA is a powerful method, since we can eas
study the equilibrium properties of analog-neuron netwo
without considering the potential, for example, analog
neural networks with asymmetric connections@6#.

Defining the order parametersmc
m andms

m ~overlap! in a
largeN limit as
e

ed

s

b

-
m
e

o-
y

n

-

s
e

mc
m5

1

N (
i

j i
m cosf i ,

ms
m5

1

N (
i

j i
m sin f i , ~5!

we obtain the following equilibrium condition by settin
df i /dt50 in Eq. ~2!:

cosf i5X~h1
i ,h2

i !5h1
i /Ah1

i 21h2
i 2, ~6!

sin f i5Y~h1
i ,h2

i !5h2
i /Ah1

i 21h2
i 2, ~7!

h1
i 5(

m

p

j i
mmc

m , h2
i 5(

m

p

j i
mms

m . ~8!

Note that we have ignored another solution, cosfi52X,
sinfi52Y, by applying the so-called Maxwell rule@11# of
statistical mechanics to find a relevant solution. Assum
mc

1 ,ms
15O(1) andmc

m ,ms
m5O(1/AN) for m.1, that is,j i

1

as a condensed pattern, and expanding a polynomial aro
mc

m ,ms
m50 (m.1) to split the cross-talk noise into an effe

tive self-coupling and a Gaussian random variable@6,12#, we
obtain the following nine-dimensional equations for the o
der parameters:

mc5^^X~x1 ,x2!&&, ~9a!

ms5^^Y~x1 ,x2!&&, ~9b!

qc5^^X2~x1 ,x2!&&, ~9c!

qs5^^Y2~x1 ,x2!&&, ~9d!

qsc5^^X~x1 ,x2!Y~x1 ,x2!&&, ~9e!

C15
12L

Aa
^^~Q̄1x11Q̄3x2!X~x1 ,x2!&&, ~9f!

C25
12L

Aa
^^~Q̄3x11Q̄2x2!X~x1 ,x2!&&, ~9g!

S15
12L

Aa
^^~Q̄1x11Q̄3x2!Y~x1 ,x2!&&, ~9h!

S25
12L

Aa
^^~Q̄3x11Q̄2x2!Y~x1 ,x2!&&, ~9i!

where ^^¯&& is taken to mean the Gaussian average o
x1 ,x2 , that is, ^^¯&&5**Dx1Dx2 . . . , and the above
equations satisfyC25S1 and qc1qs51. Note that gauge
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transformations were performed on variables of the c
densed pattern. The pattern superscripts 1 ofmc ,ms are
omitted for brevity.L and the Gaussian measureDx1Dx2
are expressed as follows:

L5C11S21C2S12C1S2 , ~10!

Dx1Dx25
dx1dx2

2pAdet Q
expS 2 1

2 @x1 ,x2#Q21Fx1

x2
G D , ~11!

Q5FQ1 Q3

Q3 Q2
G , ~12!

Q215
1

det Q F Q2 2Q3

2Q3 Q1
G5F Q̄1 Q̄3

Q̄3 Q̄2
G , ~13!

Q15~12S2!2qc12C2~12S2!qsc1C2
2qs , ~14!

Q25S1
2qc12S1~12C1!qsc1~12C1!2qs , ~15!

Q35S1~12S2!qc1~12S22C11S1C21S2C1!qsc

1C2~12C1!qs . ~16!

cosf5X(x1,x2) and sinf5Y(x1,x2) at equilibrium satisfy the
following condition:

2@~12L!mc1Aax1#sin f1@~12L!ms1Aax2#cosf

5a@C2 sin2 f2S1 cos2 f1~C12S2!sin f cosf#.

~17!

In general, Eq.~17! admits four solutions owing to the effec
tive self-coupling terms corresponding to the right-hand s
of Eq. ~17!. Figure 2 shows intersection points of the le
hand side and the right-hand side of Eq.~17!, where the filled
circles and open circles correspond to stable solutions
unstable solutions, respectively. Here, we find an availa
solution by applying the Maxwell rule@11# in thermodynam-
ics. As shown in Fig. 2, there are two enclosed areasA1 and
A2 , provided that the left-hand side of Eq.~17! is to be the
upper boundary and the right-hand side of Eq.~17! is to be
the lower one. According to the Maxwell rule@11#, we must
select a stable solution with the larger enclosed area.

FIG. 2. A schematic diagram of the Maxwell rule to select r
evant solutions to the equilibrium condition.
-

e

nd
le

The above order parameters are analogous to those o
Hopfield model@13#. qc , qs , andqsc correspond to the so
called Edwards-Anderson order parameter, which meas
the local ordering ofXY spins.C1 , C2 , S1 , and S2 corre-
spond to the susceptibility, which measures the sensitivity
external fields.

The above equations for the order parameters are m
complicated than those of Cook’s model~three-dimensional
equations! @4#. Because patterns stored in Cook’s model a
uniformly distributed in@0,2p#, two-dimensional Gaussian
noise, Eq.~11!, is isotropic, which enables us to reduce
three-dimensional equations in terms of the polar coordin
system. However, in the case of our model, two-dimensio
Gaussian noise, Eq.~11!, is anisotropic, since phase patter
stored in our model are only assigned to 0 orp. Thus, we
cannot reduce to simpler equations any more.

Here, we define a new order parameterm5Amc
21ms

2 for
convenience. The solid curve in Fig. 3~a! shows the values o
m for various values of loading ratea, which were obtained
by solving the above equations numerically. The plots in F
3~a! show results obtained by numerical simulation withN
52000. Note that the solution of the above equations for
an isotropic manifold as shown in Fig. 3~b!, because system
~2! is invariant to a uniform shift off i . Figure 3~a! shows a
cross section of this manifold.

The theory is in good agreement with the results of t
simulation. The storage capacity is given byac50.042 and
at this point the overlaps arem50.69. The storage capacit
of our model is about 1/3 as large as that of the Hopfi
model. In the case of Cook’s model,ac50.038 and at this
point, m50.899. Thus, the storage capacity of our mode
better than that of Cook’s model, but the retrieval quality
worse.

The dashed line in Fig. 3~a! denotes an unstable solutio
of the equations for the order parameters;mc51,ms50,qc
51,qs50,qsc50,C150,C250,S150, andS251. The so-
lution corresponds to the equilibrium solutionf i5u i

1 ~per-
fect memory states! from Eq. ~2!. With a largeN limit, the
equilibrium solutionf i5u i

1 is unstable.
Let us examine the stability of this solution at a finiteN.

Linearizing Eq.~2! aroundf i5u i
1 , we obtain the following

matrix A:

FIG. 3. ~a! Values of m vs loading ratea. The solid curve
denotes a stable equilibrium solution, and the dashed line show
unstable equilibrium solution that corresponds tof i5u i

11b with
any bPR. These lines are obtained by SCSNA. The plots sh
results obtained by numerical simulation withN52000. ~b! Mani-
fold of the solution. Figure 3~a! shows a cross section of this man
fold.
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A53
J112(

j

N

J1 jj1
1j j

1 J12j1
1j2

1
¯ J1Nj1

1jN
1

J21j2
1j1

1
J222(

j

N

J2 jj2
1j j

1
¯ J2Nj2

1jN
1

] ]

JN1jN
1 j1

1 JN2jN
1 j2

1
¯ JNN2(

j

N

JN jjN
1 j j

1
4 , ~18!

where we obtain eigenvalue 0 with eigenvectorrW5@1, . . . ,1#T, which corresponds to a uniform shift off i , as previously
discussed. We numerically calculated the maximum eigenvalue ofA for various values of loading ratea. Figure 4 indicates the
results, where~a! N510, ~b! N5100, ~c! N51000, and~d! N52000. According to Fig. 4, atp<2, the system is neutrally
stable aroundf i5u i

1 , and atp.2, the system is unstable, independently of the values ofN. Thus, we can estimate that th
capacity for perfect memory retrieval is given bypc52.

III. ACCELERATION EFFECT

As shown in Figs. 1~a! and 1~c!, g(f) obtained from real systems is asymmetric with respect to the origin, that is,g(f)
Þ2g(2f). In this case, all phase valuesf i continue rotating with a uniform frequency, while keeping the relative states
phase and antiphase. This phenomenon corresponds to the so-called acceleration effect@14#. Let us consider the following
perturbed system for Eq.~2!,

df i

dt
52(

j 51

N

Ji j „sin~f i2f j1s!2sin s…. ~19!

Whens is sufficiently small, we obtain the following equation from Eq.~19!:

FIG. 4. The maximum eigenvalue of matrixA vs the loading ratea, where~a! N510, ~b! N5100, ~c! N51000, and~d! N52000. At
p<2, the system is neutrally stable aroundf i5u i

1 , and atp.2, the system is unstable, independently of the values ofN.
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df i

dt
52(

j 51

N

Ji j sin~f i2f j !

2s(
j 51

N

Ji j „cos~f i2f j !21…, ~20!

where the second term on the right-hand side is a structural perturbation—asymmetry ofg(f). The neutral stability mode~a
uniform shift of f i) of Eq. ~2! is broken by this structural perturbation. Solutions in the neighborhood of an equilib
solution for an unperturbed system can be represented as

f i~ t !5c i1vt1sui~t!, ~21!

wheret5st ~slow time variable!, andc i denotes an equilibrium solution for the unperturbed system.v represents a frequenc
of rotation caused by a structural perturbation.sui(t) is a higher-order fluctuation caused by the effects of a perturba
Substituting Eq.~21! into Eq. ~20!, expanding a polynomial arounds50 and neglecting higher-order terms, we obtain

v@1, . . . ,1#T5G@u1 , . . . ,uN#T2F (
j 51

N

J1 j~c1 j21!, . . . ,(
j 51

N

JN j~cN j21!GT

, ~22!

G53
J112(

j

N

J1 j c1 j J12c12 ¯ J1Nc1N

J21c21 J222(
j

N

J2 j c2 j ¯ J2Nc2N

] ]

JN1cN1 JN2cN2 ¯ JNN2(
j

N

JN jcN j

4 , ~23!

ci j 5cos~c i2c j !, ~24!
iv
flu

s
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where we obtainrW5@1,...,1#TPker G, which corresponds to
a uniform shift off i . We can expect kerG5span$rW%, since,
if other modes with eigenvalue 0 were to exist, the relat
states would be broken by a perturbation. We can erase
tuation termG@u1 , . . . ,uN#T in Eq. ~22! taking an inner
product betweenrW and Eq.~22!. Thus,v can be expressed a

v5
1

N (
i j

N

Ji j 2
1

N (
i j

N

(
m

p

cos@~c i2u i
m!2~c j2u j

m!#, ~25!

where the second term on the right-hand side is the pote
V of the unperturbed system, Eq.~2!. Therefore, whenv

FIG. 5. ~a! and~b! Values ofm versusa. The plots are obtained
by numerical calculation using phase equation~1! with the g(f)
values shown in Figs. 1~a! and 1~b!, respectively;N51000. The
solid curves are obtained by SCSNA@g(f)5sin(f)#.
e
c-

ial

Þ0, a stationary solution is transformed into a rotating so
tion by a structural perturbation—asymmetry ofg(f).

IV. MEMORY CAPACITY OF REALISTIC MODELS

In order to verify effects of the shape of the couplin
function on the memory capacity, we estimated the mem
capacity of weakly coupled BVP oscillators with diffusion
couplings,

t ẋi5c~xi2xi
2/31yi !1«(

j
Ji j ~xj2xi !,

t ẏi52~xi1byi2a!/c1«(
j

Ji j ~yj2yi !,

i 51, . . . ,N. ~26!

When« is sufficiently small, Eq.~26! can be reduced to the
phase-variable description~1!. Figures 1~a! and 1~b! show
g(f) values obtained by the numerical calculation, where~a!
a50, b520.5,c55.0, and ~b! a50,b50,c55.0. We
started the numerical calculation using phase equation~1!
with raw g(f) values, whereN51000.

As previously discussed, by the asymmetry ofg(f), all
phase valuesf i went on rotating with a uniform frequency



.

li

u
e

d

ve
p
o

he

ps.

e
,

illa-
ning
at

ion
nce.
lse-
o a

m-
on
s
so
, un-

the
be
eld
to

ic
me-
e in
the
k-
of

del.

r,
n

or
ted
n-

ia
t t

o
e

4870 PRE 58TORU AONISHI
while keeping the relative states—in phase and antiphase
using the pattern overlapm5Amc

21ms
2, we can observe the

macroscopic relative states, since@( ij i cos(vt1fi)#
2

1@(iji sin(vt1fi)#
25((iji cosfi)

21((iji sinfi)
2.

Figures 5~a! and 5~b! show final values ofm versusa.
The plots were obtained by numerical simulation. The so
curves were obtained by SCSNA@g(f)5sin(f)#. In Fig.
5~a!, the theory is consistent with the results from the sim
lation. In Fig. 5~b!, the memory capacity is larger than th
approximated system@Eq. ~2!#. These simulations showe
that the gaps ofg(f) in Fig. 1~b! improved the performance
of the network.

BVP oscillators consist of an activatorxi and an inhibitor
yi . The movement of the activator is rapid like a pulse wa
but that of the inhibitor is gentle like a sine wave. The ga
in g(f) in Fig. 1~b! were caused by a rapid phase locking
the activator.

We numerically estimated the memory capacity of t
artificial model with the followingg(f) values:

g~f!5H sin~f!, 2
p

2
12kp,f,

p

2
12kp,

g sin~f!, otherwise,

k5 . . . ,23,22,21,0,1,2,3, . . . , ~27!

FIG. 6. Basin of attraction and memory capacity of an artific
modal with controllable gaps. The upper data points represen
equilibrium overlap. The lower data points denote the boundary
attraction. All of the data is obtained by numerical simulation wh
N5512 for five trials, except Fig. 6~a! (N51024). The error bars
indicate standard deviations.~a! g51.0. ~b! g50.5. ~c! g50.25.
~d! g50.05.
ry

A

By

d

-

,
s
f

whereg is the control parameters for the length of the ga
Figures 6~a!–6~d! show final values ofm and the boundary
of attraction versusa, where ~a! g51.0, ~b! g50.5,g
50.25, and~c! g50.05. In Fig. 6~c!, the memory capacity is
larger than that of the original system (g51.0), and the
width of the basin is almost the same as that in Fig. 6~a!. In
Fig. 6~d!, both the memory capacity and the width of th
basin are worse than those in Fig. 6~c!. From these figures
we could guess that the optimal gap is given byg;0.25.

V. CONCLUSION

Studies were made on the phase transitions of an osc
tor neural network model based on a standard Hebb lear
rule as in the Hopfield model. By SCSNA, it was found th
the storage capacity is given byac50.042. In addition, it
was numerically shown that the gaps in the coupling funct
between in phase and antiphase improve the performa
This phenomenon show that a realistic model, i.e., the pu
coupled oscillator has a good performance compared t
simpleXY spin.

The storage capacity of the Hopfield model can be i
proved by replacing the usual monotonic output functi
with a nonmonotonic one@15#. The susceptibility become
negative by the nonmonotonicity of the output function,
the variance of the cross-talk noise decreases. However
der the present conditions, we cannot determine whether
properties of the gaps of the coupling function might
analogous to those of the nonmonotonicity in the Hopfi
model. In future work, we need to expand our theory
allow it to deal with generalg(f) values.

In Cook’s model and our model, only replica-symmetr
solutions are considered. SCSNA is based on replica sym
try, because the Gaussian ansatz for the cross-talk nois
SCSNA corresponds to the replica-symmetry ansatz in
replica theory. It is well known that replica-symmetry brea
ing ~RSB! @16# occurs in Cook’s model, since the entropy
this system becomes a negative value@17#. We can also
guess that replica-symmetry breaking occurs in our mo
Therefore, we need to derive RSB solutions@18# of the os-
cillator network model as in the Hopfield model. Howeve
the derivation of the RSB solutions is more difficult tha
with the Hopfield model.
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