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Phase transitions of an oscillator neural network with a standard Hebb learning rule
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Studies have been carried out on the phase transition phenomena of an oscillator network model based on a
standard Hebb learning rule such as the Hopfield model. The relative phase informations, the in phase and
antiphase, can be embedded in the network. By self-consistent signal-to-noise analysis, it was found that the
storage capacity is given by.=0.042, which is better than that of Cook’s model. However, the retrieval
quality is worse. In addition, an investigation was made into an acceleration effect caused by asymmetry of the
phase dynamics. Finally, it was numerically shown that the storage capacity can be improved by modifying the
shape of the coupling functiohS1063-651X98)12710-1

PACS numbd(s): 87.10+¢e, 05.90+m, 89.70+cC

[. INTRODUCTION dent on the lowest frequency components of the coupling
function [8]. However, the former analyses do not support
Two hypotheses are available on the carrier of informa-our analysis, since properties of the cross-talk noise in our
tion in the brain. One, the rate coding hypothesis, states th&ystem are different from those of scattered natural frequen-
information is represented by the density of spikes. Thecies which break the mutual entrainment.
other, the temporal coding hypothesis, states that information [N this parer, in order to verify effects of the shape of the

is represented by the timing of neuronal firings, that is, thecoupling function on the performance of a network, we esti-
synchronization of oscillatory neural activities. mate the memory capacity of more realistic models. In addi-

Visual information is divided into a number of features, tion, we numerically show that, in the case of an associative
e.g., color, form, motion, and so on, which are processed iff€émory(on the basis of an oscillator netwgrigaps in the
parallel in different areas of the brain. von der Malsbfrgy ~ coupling function between in phase and antiphase improve
has emphasized the necessity of temporal coding to binthe performance.
these features, and have called into question conventional

models based on rate coding. It should be noted that somg; ANALYSIS OF AN OSCILLATOR NETWORK BASED

physiological.phgnome_r{e] have sup.ported hi§ discusgion. ON A STANDARD HEBB LEARNING RULE
Therefore, this discussion may also increase interest in tem-
poral coding. In general, when the coupling is sufficiently weak, the

One merit of temporal coding is that the information pro- high-dimensional dynamics of a coupled oscillator system
cessing(e.g., optimization-minimization of an energy func- can be reduced to the following phase equafi@h
tion) achieved by temporal coding neurof., coincidence
detectorgis faster than that achieved by rate coding neurons de: N
(i.e., integrators[3]. Tr =2 (b ¢y

Recently, therefore, the oscillator neural network has been =1
attracting the attention of a growing number of researchers.

In this paper, we discuss a class of oscillator neural net- i=1,...N, 1)
works that store two-value memory patterns into synchro-

nously oscillating states. This class of oscillator neural netyhereN is the total number of oscillatorg); is the phase of
works is difficult to study analytically, and therefore was notineith oscillator and);; denotes a synaptic weighg(¢) is a

discussed in previous workg,5]. To overcome the diffi- periodic function. Figures (& and Xb) show examples of
culty, we employ a powerful methdd] that can be applied

to various networks, and derive the memory capacity. Our 06
model is more biologically relevant than previous models 04
[4,5], since it is based on a real number synapse which is %2

specified by a standard Hebb learning rule. e
In previous analyseg4,5,7 and our analysis, a coupling 04
function of a phase equation was approximately assumed a: -6

the sine function for mathematical tractability. In a large 08
population of uniformly coupled oscillators with scattered 2) "o
natural frequenciegwhich corresponds to ferromagnetic
modelg, the behavior of the system is invariant to the shape FIG. 1. (a) and (b) Examples ofg(¢) that are obtained by the
of the coupling function, that is, the critical variance of the numerical calculation of weakly coupled BVP oscillators, i.e., Eq.
natural frequency causing a phase transition is only depen26), where(a) a=0,b=—0.5,c=5.0 and(b) a=0,b=0,c=5.0.
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g(¢) values(sinelike curvesobtained by the numerical cal- 1

culation of weakly coupled Bonhoeffer—Van der RBVP) mg =N > & cosgy,

oscillators. '

For mathematical tractability, we approximately assume 1

g(¢)=sin(¢). Then, Eq.(1) is expressed as mgzﬁ Z &L sin ¢, (5)
de N _ we obtain the following equilibrium condition by setting
W:_le Jij sin(¢i— ¢;). (2)  dg¢;/dt=0 in Eq.(2):

_ i hiY—_hi/. [h2 12

In Cook’s model(a Q-state clock model witlQ — ) [4], J;; cos ¢ =X(hy,hp) =hy/Vhy"+h%, 6)

is a complex number synapse specified by a generalized

Hebb learning rul¢7,5], which cannot be easily achieved in sin ¢i=Y(hi ,hiz)zhizl F_—h'12+h' ) @

biological implementation. Cook’s model can be regarded as
an extension of Hopfield networks to “multistates.” Here,

J;; is specified by the following learning rule: 2 .
e ’ ° ’ hy=2 &me, hh=2 &me. ®
2 2
1 ° . .
- o w_ § o Note that we have ignored another solution, ¢os—X,
Y=y ;1 e, ar=expion), ® sin g=—Y, by applying the so-called Maxwell rufgd 1] of

statistical mechanics to find a relevant solution. Assuming

where{6/'}i_1 . N1, .. pare phase patterns to be stored mg,mg=0(1) andmg,m'=O(1/\N) for >1, that i,S'fil
in the network, and are randomly assigned to Growith a as a condensed pattern, and expanding a polynomial around
probability of 1/2. m#,m&=0 (u>1) to split the cross-talk noise into an effec-
We define a parameter (loading raté such thata tive self-coupling and a Gaussian random varigblé 2|, we
=p/N. This learning rule is equivalent to a standard Hebpobtain the following nine-dimensional equations for the or-
learning rule like in the Hopfield modgL0], which can be der parameters:
easily achieved in biological implementatiod; increases
between simultaneously firing cells; otherwidg,decreases. me={{X(X1,X2))), (93
In area CALl of the hippocampus, stimulation on the in-
phase of the hippocampal theta rhythm includes a long-term

potentiation that can be depontentiated by stimulation on the ms={(Y(x1.%2))), (9b)
anti-phase of the theta rhythffil]. Thus, oscillator network
models with the standard Hebb learning are simple and bio- de={({X3(X1,X2))), (90
logically plausible, yet have to be analyzed mathematically
[5,12]. 2
System(2) has the following potentiaV/: 9s={{Y*(x1,%2))), (9d)
N p Osc= ((X(X1,X2) Y(X1,X2))), (9¢)

1
V=-on 2 2 cod(di— 68— (4—6)]. (4
1] Y2 1—A - o
Clzw«(QlXﬁ'Q3X2)X(X1,X2)>>, (9)

This potential(4) is invariant under the transformatiog
— ¢+ B with any BeR. In other words, the equilibrium

solution is irresistant to a uniform shift ap; (the neutral 1—-A _
stability). Hence, the relative phase informations, i.e., the in C,= (((Qaxy+QaXz) X(X1,X2) )Y, (99
phase and antiphase, can be embedded in the network. Va

Here, we study the equilibrium properties of systém
whenp,N—oo with fixed a=p/N, by using self-consistent 1-A
signal-to-noise analysi$SSCSNA) [6], which is based on the S, =
S/N analysis to explain the equilibrium properties. The re- Ja
sults of applying SCSNA to the Hopfield modgd] and
Cook’s model[5] coincide with those of the replica theory 1—A
[13,4]. SCSNA is a powerful method, since we can easily _- N s = :
study the equilibrium properties of analog-neuron networks 2 Ja {(Qexa+Q2x2) Y1, X2))), ©)
without considering the potential, for example, analogue
neural networks with asymmetric connectids. where ({(--+)) is taken to mean the Gaussian average over

Defining the order parametemnsf andmf (overlap ina  xq,X,, that is, ((---))=[/Dx;Dx, ..., and theabove
largeN limit as equations satisfyfC,=S, and g.+qgs=1. Note that gauge

(((Qux1+ Qax2) Y(X1,X2))), (9h)
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FIG. 2. A schematic diagram of the Maxwell rule to select rel-

evant solutions to the equilibrium condition.
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FIG. 3. (a) Values of m vs loading ratea. The solid curve
denotes a stable equilibrium solution, and the dashed line shows an

(a

transformations were performed on variables of the conunstable equilibrium solution that correspondsdtg= 6+ 8 with

densed pattern. The pattern superscripts Imgfmg are
omitted for brevity.A and the Gaussian measub;Dx,
are expressed as follows:

A=Ci+5+C,5,—C;S;, (10
dx,dx
Dxlezzﬁex —1[x1,%,]Q 7t 2 , (11
Q:[Ql Qs] 12
Qs Qa

Q- 1 Q2 _Qg-: 61 63 13

detQ[-Qs Qi ] |Q; Q,
Q;=(1-5,)20,+2Cx(1—-Sy)qsc+C30s, (14
Qy=S20.+2S,(1-Cy)sc+(1—-Cp)%qs, (15

Q3=S1(1-5,)qc+(1-S,—C1+5,C,+S,C1)dsc

+Co(1-Cyas. (16)

c0s ¢p=X(X;,%) and sing=Y(x; ,X,) at equilibrium satisfy the

following condition:

—[(1—A)m.+ Jax;]sin ¢+[(1—A)mg+ Jax,]cos ¢
=a[C, sirf $—S; co ¢+ (C,—S,)sin ¢ cos¢].
17)

any BeR. These lines are obtained by SCSNA. The plots show
results obtained by numerical simulation with=2000. (b) Mani-

fold of the solution. Figure @& shows a cross section of this mani-
fold.

The above order parameters are analogous to those of the
Hopfield model[13]. q., g5, andgs. correspond to the so-
called Edwards-Anderson order parameter, which measures
the local ordering ofXY spins.C4, C,, S;, andS, corre-
spond to the susceptibility, which measures the sensitivity to
external fields.

The above equations for the order parameters are more
complicated than those of Cook’s mod#hree-dimensional
equationy [4]. Because patterns stored in Cook’s model are
uniformly distributed in[0,27], two-dimensional Gaussian
noise, Eq.(11), is isotropic, which enables us to reduce to
three-dimensional equations in terms of the polar coordinate
system. However, in the case of our model, two-dimensional
Gaussian noise, Eq11), is anisotropic, since phase patterns
stored in our model are only assigned to OmrThus, we
cannot reduce to simpler equations any more.

Here, we define a new order parameates \/mcz+ mS2 for
convenience. The solid curve in FigaBshows the values of
m for various values of loading rate, which were obtained
by solving the above equations numerically. The plots in Fig.
3(a) show results obtained by numerical simulation wih
=2000. Note that the solution of the above equations forms
an isotropic manifold as shown in Fig(t8, because system
(2) is invariant to a uniform shift of; . Figure 3a) shows a
cross section of this manifold.

The theory is in good agreement with the results of this
simulation. The storage capacity is given &y=0.042 and
at this point the overlaps ara=0.69. The storage capacity
of our model is about 1/3 as large as that of the Hopfield
model. In the case of Cook’s modet,=0.038 and at this

In general, Eq(17) admits four solutions owing to the effec- POINt, M=0.899. Thus, the storage capacity of our model is
tive self-coupling terms corresponding to the right-hand sid€tter than that of Cook’s model, but the retrieval quality is

of Eq. (17). Figure 2 shows intersection points of the left- WOr'S€.

hand side and the right-hand side of Etj7), where the filled

The dashed line in Fig.(8) denotes an unstable solution

circles and open circles correspond to stable solutions an@lf the equations for the order parameterg;=1,ms=0,qc
unstable solutions, respectively. Here, we find an availablg 1,9s=0.0sc=0,C;=0,C,=0,5,=0, andS,=1. The so-

solution by applying the Maxwell rulgl1] in thermodynam-
ics. As shown in Fig. 2, there are two enclosed areaand
A,, provided that the left-hand side of E(.7) is to be the
upper boundary and the right-hand side of ELj) is to be
the lower one. According to the Maxwell rufé1], we must
select a stable solution with the larger enclosed area.

lution corresponds to the equilibrium solutiah) = 9} (per-
fect memory statgsrom Eq. (2). With a largeN limit, the
equilibrium solutiong; = 0i1 is unstable.

Let us examine the stability of this solution at a finiNe
Linearizing Eq.(2) around¢;= eil, we obtain the following
matrix A:
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FIG. 4. The maximum eigenvalue of matéxvs the loading rater, where(a) N=10, (b) N=100, (¢c) N=1000, andd) N=2000. At
p=<2, the system is neutrally stable arousg= eil, and atp>2, the system is unstable, independently of the valuds.of

- N -
Ji— 2 Jljﬂfjl lefifé JlNﬂf&
i
N
1.1 11 .. 1e1
A J21€3671 Jzz_; Joi 626 Jonézén , 19
N
Inaénél In2Enés JNN_E JNjghgjl
]
where we obtain eigenvalue 0 with eigenveater[1, ...,1]", which corresponds to a uniform shift @f., as previously

discussed. We numerically calculated the maximum eigenvaldefaf various values of loading rate Figure 4 indicates the
results, wherda) N=10, (b) N=100, (c) N=1000, andd) N=2000. According to Fig. 4, gh<2, the system is neutrally
stable aroundp;= Hil, and atp>2, the system is unstable, independently of the valuds.ofhus, we can estimate that the
capacity for perfect memory retrieval is given py=2.

Ill. ACCELERATION EFFECT

As shown in Figs. (a) and Xc), g(¢) obtained from real systems is asymmetric with respect to the origin, thgfds,
#—0g(— ¢). In this case, all phase valuégg continue rotating with a uniform frequency, while keeping the relative states—in
phase and antiphase. This phenomenon corresponds to the so-called acceleratidti4gffeet us consider the following
perturbed system for Edq2),

déi . .
Sr = 2 Ji(sin(i— ¢+ o) —sin o). (19

j=1

When ¢ is sufficiently small, we obtain the following equation from Eg9):
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déi < |
W:_El Jij sin(¢;— &)

N
—agl Jij(cod ¢ — b)) — 1), (20

where the second term on the right-hand side is a structural perturbation—asymmgtey) ofThe neutral stability modéa

uniform shift of ¢;) of Eq. (2) is broken by this structural perturbation. Solutions in the neighborhood of an equilibrium
solution for an unperturbed system can be represented as

di()=¢i+ T+ oui(7), (21)

wherer= ot (slow time variablg, andy; denotes an equilibrium solution for the unperturbed systemepresents a frequency
of rotation caused by a structural perturbation;(7) is a higher-order fluctuation caused by the effects of a perturbation.
Substituting Eq(21) into Eq. (20), expanding a polynomial aroungi=0 and neglecting higher-order terms, we obtain

N N T
(l)[l, e vj]T:G[uli e 1UN]T_ ]_21 ‘]lj(clj_l)! CEE) ,jzl ‘JNJ(CNJ_l) ’ (22)
- N -
311—2 J1jCqj J1L12 JinCin
i
N

G J21C21 322_; JajCy JanCon | 23

N

JNn1CN1 JNn2Cn2 JNN—Z INjCN;

i

Cij=cod ¢ — ), (24)

where we obtainfz[l,. ..,JT e ker G, which corresponds to #0, a stationary solution is transformed into a rotating solu-
a uniform shift of; . We can expect keG=sparir}, since, 1N by a structural perturbation—asymmetrygii).

if other modes with eigenvalue 0 were to exist, the relative

states would be broken by a perturbation. We can erase fluc- V. MEMORY CAPACITY OF REALISTIC MODELS

. T . . .
tuation termG[uy, ... Ux]" in Eq. (22) taking an inner In order to verify effects of the shape of the coupling
product between and Eq.(22). Thus,w can be expressed as fynction on the memory capacity, we estimated the memory
N capacity of weakly coupled BVP oscillators with diffusional
1

N p .
1 couplings,
0= 2 J— 1 2 D cod (=8 — (= 6], (29 PN
N N T %

§ 2

Xi=C(X; —X/3+y;)+ Jii (Xi —Xi),
where the second term on the right-hand side is the potential ™X=CO X3ty 82,—“ (=)
V of the unperturbed system, E(R). Therefore, whernw

Unwmg IS T 7y=—(xi+by—a)lc+e, Jij(Yi—Vi),
08 i, . 08 ""**ﬁis:i:;:m J
osf. T 08 MRSy i=1,...N. (26)
041 - 04 ,
02 S Whene is sufficiently small, Eq(26) can be reduced to the
o el . phase-variable descriptiofi). Figures 1a) and ib) show
(a) % oo 004 006 008 (b) % o2 004~ 006 008 d(¢) values obtained by the numerical calculation, where

a=0, b=-0.5,c=5.0, and (b) a=0,b=0,c=5.0. We
FIG. 5. (a) and(b) Values ofm versusa. The plots are obtained Started the numerical calculation using phase equation
by numerical calculation using phase equatiah with the g(¢) ~ With raw g(¢) values, whereN=1000.
values shown in Figs. (& and b), respectively;N=1000. The As previously discussed, by the asymmetrygéip), all
solid curves are obtained by SCSNA(¢)=sin(¢)]. phase valuegh; went on rotating with a uniform frequency,
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wherey is the control parameters for the length of the gaps.
Figures 6a)—6(d) show final values ofm and the boundary
of attraction versusa, where (@) y=1.0, (b) y=0.5,vy
=0.25, andc) y=0.05. In Fig. &c), the memory capacity is
larger than that of the original systemy£1.0), and the
width of the basin is almost the same as that in Fig).Gn
Fig. 6(d), both the memory capacity and the width of the
basin are worse than those in Figcs From these figures,
we could guess that the optimal gap is givenoy 0.25.

o
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V. CONCLUSION

0.6

m
04

Studies were made on the phase transitions of an oscilla-
tor neural network model based on a standard Hebb learning
025 rule as in the Hopfield model. By SCSNA, it was found that
(c) the storage capacity is given hy.=0.042. In addition, it

_ , , .. was numerically shown that the gaps in the coupling function
FIG. 6. Basin of attraction and memory capacity of an artificial between in phase and antiphase improve the performance.

modal with controllable gaps. The upper data points represent th"f‘his phenomenon show that a realistic model, i.e., the pulse-

equ”'b.”um overlap. The .lower ‘.jata points der.'Ote t.he bo.undary Of(:oupled oscillator has a good performance compared to a
attraction. All of the data is obtained by numerical simulation when

0.2
0

N=512 for five trials, except Fig.(6) (N=1024). The error bars
indicate standard deviation&) y=1.0. (b) y=0.5. (c) y=0.25.
(d) y=0.05.

simple XY spin.

The storage capacity of the Hopfield model can be im-
proved by replacing the usual monotonic output function
with a nonmonotonic ongl5]. The susceptibility becomes

while keeping the relative states—in phase and antiphase. B}e9ative by the nonmonotonicity of the output function, so

using the pattern overlap= \/mcz+ msz, we can observe the
macroscopic relative states, SincES;¢; cos@r+ ¢) T
+[Zi§ sin(er+ @) P=(Si& cos¢)*+ (& sin #)°.

Figures %a) and 3b) show final values ofm versusa.
The plots were obtained by numerical simulation. The soli
curves were obtained by SCSNA(¢)=sin(¢)]. In Fig.
5(a), the theory is consistent with the results from the simu
lation. In Fig. §b), the memory capacity is larger than the
approximated systerfEq. (2)]. These simulations showed
that the gaps of( ¢) in Fig. 1(b) improved the performance
of the network.

BVP oscillators consist of an activatgy and an inhibitor
yi . The movement of the activator is rapid like a pulse wave
but that of the inhibitor is gentle like a sine wave. The gap
in g(¢) in Fig. 1(b) were caused by a rapid phase locking of
the activator.

We numerically estimated the memory capacity of the

artificial model with the followingg(¢) values:

in( ¢) T F2k T r2k
o(d)= sin(¢), _§+2 7T<¢<E+2 T,
v sin(¢), otherwise,
k=...,-3-2-1,0123..., (27

the variance of the cross-talk noise decreases. However, un-
der the present conditions, we cannot determine whether the
properties of the gaps of the coupling function might be
analogous to those of the nonmonotonicity in the Hopfield

amodel. In future work, we need to expand our theory to

allow it to deal with generafj(¢) values.

In Cook’s model and our model, only replica-symmetric
solutions are considered. SCSNA is based on replica symme-
try, because the Gaussian ansatz for the cross-talk noise in
SCSNA corresponds to the replica-symmetry ansatz in the
replica theory. It is well known that replica-symmetry break-
ing (RSB) [16] occurs in Cook’s model, since the entropy of
this system becomes a negative valud]. We can also
‘guess that replica-symmetry breaking occurs in our model.

STherefore, we need to derive RSB solutidis] of the os-

cillator network model as in the Hopfield model. However,
the derivation of the RSB solutions is more difficult than
with the Hopfield model.
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